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In this paper, the Hopf bifurcation and control of the magnetic bearing system under an uncertain parameter are investigated.
Firstly, the two-degree-of-freedom magnetic bearing system model with uncertain parameter is established. ,e method of
orthogonal polynomial approximation is used to obtain the equivalent magnetic bearing model which is deterministic. Secondly,
combining mathematical analysis tools and numerical simulations, the Hopf bifurcation of the equivalent model is analyzed.
Finally, a hybrid feedback control method (linear feedback control method combined with nonlinear stochastic feedback control
method) is introduced to control the Hopf bifurcation behavior of the magnetic bearing system.

1. Introduction

One of the most innovative developments involves the use of
magnetic bearings. ,ey are now being used widely in ro-
tating machinery because of their advantages, including very
low friction, no wear, and high rotor speed. ,e application
of magnetic bearing technology has experienced substantial
growth since the First International Symposium on Mag-
netic Bearings was held in 1988. Nowadays, the magnetic
bearings play an important role during the aerospace, me-
chanical engineering, and transportation, and on the base of
these applications [1], various problems onmagnetic bearing
have attracted more and more researchers.

Many achievements in the field of the nonlinear analysis
of the magnetic bearing systems were reported [2–4]. ,e
functional principle of the magnetic bearing is shown in
Figure 1. Most of the components are of nonlinear char-
acteristics; therefore, the entire system becomes inherently
nonlinear. Some results focused on the modeling of non-
linear characteristics [5, 6]. Nayfeh and Balachandran added
a quadratic nonlinear term to the magnetic bearing model
[5]. Ji and Hansen [6] considered the cubic nonlinear term
into the magnetic bearing system. In addition, owing to the

magnetic bearings having the sophisticated nonlinear
characteristics, there are many interesting nonlinear phe-
nomena in systems as given in [7], such as jumping, bi-
furcation, multisolution, sensitivity to initial conditions, and
even chaos. References [8, 9] utilized numerical simulation
methods to analyze the bifurcation phenomena in active
magnetic bearing systems. Orbit plot, the bifurcation dia-
gram, the power spectrum, and Poincaré mapping were used
in [8] to identify the main factors affecting the dynamic
characteristics of an AMB system. Asymptotic perturbation
method [10] and the multiple scales method [11] were used
to study the dynamical response of the magnetic bearing
system with time-varying stiffness. Nonlinear phenomena
like period doubling, quasiperiodic motion, and chaos in the
presence of geometrical coupling were observed in [12] with
numerical simulation. Zhe et al. studied nonlinear dynamic
characteristic analysis of the magnetic bearing system based
on the cell mapping method [13].

It is important to note that, in most previous works,
many authors paid attention to controlling the problems of
the magnetic bearing system. Reference [14] introduced a
well-developed position controller and different compen-
sation methods to achieve a good running behavior. Robust
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controllers were used to control the effects of external
disturbances on magnetic bearings in [15]. Kiani et al. [16]
designed a segmented linear form of hybrid controller to
stabilize the magnetic bearing system. Shrivastava and his
team proposed a model-based method to estimate un-
balanced rotor plane parameters, using Kalman filter and
recursive least squares input force estimation technique in
[17]. ,e method based on the Fourier series and the
Legendre polynomial to identify the imbalance of the
magnetic bearing rotor system was described in literature
[18]. Reference [19] developed a feedforward control
strategy for the rotor imbalance of high-speed magnetic
suspension centrifugal compressors.

,e above studies on the dynamic behavior and control
of bearing are all about deterministic systems. As we all
know, uncertainty is ubiquitous. ,ere are some research
works which study the dynamic behavior of magnetic
bearing systems in random environments. ,e Monte-Carlo
method is used to investigate the bifurcation and chaos
characteristics of a cracked rotor with a white noise process
as its random disturbance in [20]. Yan and Jia [21] used
direct integration scheme in the analysis of the rotor bearing
systems subjected to random earthquake excitation. In
addition to external random excitation, the randomness of
the magnetic bearing itself caused by the environment and
materials will also have a certain impact on the system, but
such research results have not been found in the literature as
far as we know. In this paper, we present stochastic magnetic
bearing with uncertain parameters and analyze Hopf bi-
furcation in detail.

,is paper is organized as follows. In Section 2, the
stochastic magnetic bearing model is established. ,en, we
calculate the response solutions of the system. Section 3
develops the Hopf bifurcation of the model and verifies by
numerical simulation. ,e strategies of controlling bi-
furcation are presented in Section 4.

2. System Model

,e magnetic bearing is shown in Figure 2. ,e stator has
eight pole pairs. ,e flux leakage, eddy current loss, satu-
ration, and hysteresis of the core material are ignored as to
simplify the model. It is assumed that all magnets have the
same structure and number of windings. According to

electric magnetic theory, the magnetic force generated by
every pole in the electromagnet can be expressed as follows:

fi �
1
4
μN

2
A

I2i

δ2i
cosφ, i � 1, 2, . . . , 8. (1)

,e radial bearing between the electromagnet and the
rotor is exemplified by the first pole pair, and the other pole
pairs are analyzed in the same way; x and y denote the
deviation from the center of the bearing.,e radial clearance
of the first pole can be written as

δ1 � c0 + x sin α − y cos α. (2)

,e sum electromagnetic forces of the horizontal and
vertical directions are of the form as follows:

fx � f2 + f3 − f6 − f7( 􏼁cos α + f1 + f4 − f5 − f8( 􏼁sin α,

fy � f4 + f5 − f1 − f8( 􏼁cos α + f3 + f6 − f2 − f7( 􏼁sin α.

(3)

,e force, fi, is expanded using a Taylor series and is
approximated by only retaining the third-order nonlinear
terms; thus, equation (3) can be given by

fx � fx(linear) + fx(cubic) + o(4),

fy � fy(linear) + fy(cubic) + o(4),
(4)
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Figure 1: Functional principle of magnetic bearing.
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Figure 2: Schematic for modeling magnetic forces acting on the
bearing.
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where o(4) denotes terms of order greater than four. ,e
model consists of a mass with two degrees of freedom, and
the equations of motion governing the unbalance of the
magnetic bearing can be written as

m €x � fx − c _x + meΩ2 cosΩt,

m €y � fy − c _y + meΩ2 sinΩt.
(5)

Finally, introducing nondimensional parameters, and
neglecting the rotor weight, the two-degree-of-freedom
magnetic bearing system can be rearranged as [6]

€x + 2μ _x + ω2
x − ( α1x

3
+ α2xy

2
+ α3x

2
_x + α4 _xy

2

+ α5x _y
2

+ α6x _x
2

+ α7xy _y􏼁 � 2f cosΩt,

€y + 2μ _y + ω2
y − ( α1y

3
+ α2yx

2
+ α3y

2
_y

+ α4 _yx
2

+ α5y _x
2

+ α6y _y
2

+ α7yx _x􏼁 � 2f sinΩt,

(6)

where x, y, μ, and Ω refer to the rotor displacement in the x

and y directions, magnetic permeability, and rotor speed,
respectively. f represents magnetic force, w is the linearized
natural frequency, and α1, α2, α3, α4, α5, α6, and α7 are the
coefficients of nonlinear terms. Owing to that the bearing
capacity is affected by the medium of the magnetic bearing and
it is described by the permeability, we consider μ is an uncertain
parameter. ,at is to say, its value is not a fixed number, but
varies in a small range with magnetic field intensity, temper-
ature and so on. Supposing μ can be expressed as

μ � μ + δu, (7)

where μ and δ/2 are the mean and standard deviation of μ,
respectively. u is a random variable that defines the prob-
ability density function of the arched distribution on [− 1, 1].
Substituting equation (7) into (6), we can get

€x + 2(μ + δu) _x + ω2
x − ( α1x

3
+ α2xy

2
+ α3x

2
_x

+ α4 _xy
2

+ α5x _y
2

+ α6x _x
2

+ α7xy _y􏼁 � 2f cosΩt,

€y + 2(μ + δu) _y + ω2
y − ( α1y

3
+ α2yx

2
+ α3y

2
_y

+ α4 _yx
2

+ α5y _x
2

+ α6y _y
2

+ α7yx _x􏼁 � 2f sinΩt.

(8)

Equation (8) can be reorganized a first-order standard
equation as

_x � z,

_z � 2f cosΩt + α4y
2
z − 2(μ + δu)z + α3x

2
z + α6xz

2

+ α1x
3

+ α2y
2

+ α5q
2

+ α7yq − ω2
􏼐 􏼑x,

_y � q,

_q � 2f sinΩt + α4x
2
q − 2(μ + δu)q + α3y

2
q + α6yq

2

+ α1y
3

+ α2x
2

+ α5z
2

+ α7xz − ω2
􏼐 􏼑y.

(9)

Equation (9) can be transformed to an equivalent de-
terministic system through the orthogonal polynomial ap-
proximation theory as [22]

d
dt

x0(t) � z0(t),

d
dt

z0(t) � 2f cosΩt + α4S0(t) − 2μz0(t)

− δz1(t) + α3A0(t) + α6B0(t) + α1X0(t)

+ α2C0(t) + α5D0(t) + α7E0(t) − ω2
x0(t),

d
dt

y0(t) � q0(t),

d
dt

q0(t) � 2f sinΩt + α4F0(t) − 2μq0(t)

− δq1(t) + α3G0(t) + α6H0(t) + α1Y0(t)

+ α2I0(t) + α5J0(t) + α7K0(t) − ω2
y0(t),

d
dt

x1(t) � z1(t),

d
dt

z1(t) � α4S1(t) − 2μz1(t) − δ z0(t) + z2(t)( 􏼁

+ α3A1(t) + α6B1(t) + α1X1(t) + α2C1(t)

+ α5D1(t) + α7E1(t) − ω2
x1(t),

· · ·

d
dt

xN(t) � zN(t),

d
dt

zN(t) � α4SN(t) − 2μzN(t) − δzN− 1(t) + α3AN(t)

+ α6BN(t) + α1XN(t) + α2CN(t) + α5DN(t)

+ α7EN(t) − ω2
xN(t),

d
dt

yN(t) � qN(t),

d
dt

qN(t) � α4FN(t) − 2μqN(t) − δqN− 1(t) + α3GN(t)

+ α6HN(t) + α1YN(t) + α2IN(t) + α5JN(t)

+ α7KN(t) − ω2
yN(t).

(10)

We make N � 2, the numerical solution xi(t), zi(t),
yi(t), and qi(t) (i � 0, 1, 2) of equation (10) can be obtained
by an effective numerical method. ,e approximate random
response of equation (10) can be expressed as
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x(t, u) � 􏽘
2

i�0
xi(t)Ui(u),

z(t, u) � 􏽘
2

i�0
zi(t)Ui(u),

y(t, u) � 􏽘
2

i�0
yi(t)Ui(u),

q(t, u) � 􏽘

2

i�0
qi(t)Ui(u).

(11)

If the random parameter u � 0, that is to say, when μ � μ,
the sample response of themean parameter system (for short
SRM) can be calculated as

x(t, 0) � 􏽘
2

i�0
xi(t)Ui(0) � x0(t) − x2(t),

z(t, 0) � 􏽘
2

i�0
zi(t)Ui(0) � z0(t) − z2(t),

y(t, 0) � 􏽘
2

i�0
yi(t)Ui(0) � y0(t) − y2(t),

q(t, 0) � 􏽘
2

i�0
qi(t)Ui(0) � q0(t) − q2(t).

(12)

,e ensemble mean response (for short EMR) of
equation (10) is

E[x(t, u)] � 􏽘
2

i�0
xi(t)E Ui(u)􏼂 􏼃 � x0,

E[z(t, u)] � 􏽘
2

i�0
zi(t)E Ui(u)􏼂 􏼃 � z0,

E[y(t, u)] � 􏽘
2

i�0
yi(t)E Ui(u)􏼂 􏼃 � y0,

E[q(t, u)] � 􏽘
2

i�0
qi(t)E Ui(u)􏼂 􏼃 � q0.

(13)

,e responses x(t) and y(t) of the deterministic
equation (6) can be directly obtained by the Runge–Kutta
method. ,e initial condition for the equivalent de-
terministic system (equation (10)) is

x(0) � [0.18, 0, 0]T,

z(0) � [0, 0, 0]T,

y(0) � [0.18, 0, 0]T,

q(0) � [0, 0, 0]T.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

3. Hopf Bifurcation Analysis of Equivalent
Deterministic Magnetic Bearing System

3.1. Mathematical Analysis. ,is section studies the Hopf
bifurcation of the equivalent magnetic bearing (equation (10))
through theoretical analysis. We consider the situation when
the magnetic force f disappears. Obviously, the equivalent
magnetic bearing deterministic system has a unique equi-
librium point xi0, the Jacobian matrix of equation (10) is

J �

0 1 0 0 · · · 0 0

− ω2 − 2μ 0 0 · · · 0 0

0 0 0 1 · · · 0 0

0 0 − ω2 − 2μ · · · 0 0

· · · · · · · · · · · · ⋱ · · · · · ·

0 0 0 0 · · · 0 1

0 0 0 0 · · · − ω2 − 2μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

,e characteristic equation of the matrix (15) is

F(λ) � a0λ
12

+ a1λ
11

+ a2λ
10

+ a3λ
9

+ a4λ
8

+ a5λ
7

+ a6λ
6

+ a7λ
5

+ a8λ
4

+ a9λ
3

+ a10λ
2

+ a11λ
1

+ a12

� 0,

(16)

where ai (i � 1, 2, . . . , 12) can be calculated by MATLAB.
According to the deterministic nonlinear dynamical system
bifurcation theory, we assume that the bifurcation parameter
is v; the conditions under which Hopf bifurcation occurs in
the system are

(1) ,e Jacobi matrix (15) has a pair of conjugated
eigenvalues

(2) When v � vc, α(vc) � 0, β(vc)> 0, and α′(vv)≠ 0
(3) ,e rest eigenvalues of Jacobi matrix (15) have

nonzero real parts

Since the order of the equivalence equations is high, it is
difficult to find the parameter value that satisfies the above
conditions directly. ,erefore, the following lemma is
proposed for obtaining the parameter value.

Lemma 1. Let F be the characteristic equation of the system
at the equilibrium point, Δn is the n-dimensional Routh-
Hurwitz determinant, and ai is the coefficient of the char-
acteristic equation. If a bifurcation parameter vc satisfies

(1) Δn− 1(vc) � 0, Δn− 2(vc)≠ 0, Δn− 3(vc)≠ 0
(2) ai(vc)> 0 (i � 0, . . . , n)

(3) Δn− 1′ (vc)≠ 0

"en, the first two of Hopf existence conditions are
established.

According to [6], we substitute μ � 0.019,ω � 1.0085
into Δ11 � 0 and get the value of the bifurcation parameter δ.
Only when δ � 0.025, there exists Δ10(δ)≠ 0, Δ9(δ)≠ 0,
Δ11′ (δ)≠ 0, ai(δ)> 0 (i � 0, . . . , 12), and the first two
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conditions of the Hopf bifurcation are established. Also at this
time, the eigenvalues of the matrix are λ1,2 � − 0.019∓ 1.0083i,
λ3,4 � − 0.0367∓ 1.0078i, and λ5,6 � − 0.0013∓ 1.0085i. Obvi-
ously, the matrix (15) has conjugate eigenvalues and the real
parts of the remaining eigenvalues are negative. ,erefore, the
bearing system with uncertain parameter appears Hopf bi-
furcation near the zero when the system’s bifurcation pa-
rameter δ � 0.025.

3.2. Numerical Simulation. To perform the numerical
simulations, the values for the system parameters are chosen
as follows: ω � 1.0085, α1 � − 0.9262, α2 � 1.8591, α3 �

− 0.0113, α4 � − 0.0162, α5 � 2.9289 × 10− 5, α6 � 1.7071×

10− 4, and α7 � − 0.0182. Considering the equivalent de-
terministic magnetic bearing system with f � 0, from the
above analysis, the critical value for generating Hopf bi-
furcation is δ � 0.025. When δ < 0.025, the horizontal and
vertical responses of the magnetic bearing system are as
shown in Figure 3, and the responses in both directions are
the same. ,e SRM and EMR phase trajectory gradually
converge to the equilibrium point with time. ,e corre-
sponding time history diagram shows that the response
solution fluctuates more slowly and tends to the line
gradually. In other words, if the initial value is given, the
magnetic force disappears suddenly and the motion of the
magnetic bearing system tends to stop eventually. It can be
seen from Figure 3 that the horizontal and vertical magnetic
bearing movements are the same when f � 0, so we only
consider the horizontal direction in the subsequent research.
As δ > 0.025, a limit cycle is generated at the equilibrium
point, as shown in Figure 4. ,e phase trajectory of the SRM
and EMR gradually converge to a closed curve near the
equilibrium point, that is, the equivalent deterministic
magnetic bearing system creates a limit cycle. ,e amplitude
of the EMR no longer changes which can be seen from the
time history diagram. ,e trajectory at this moment in-
dicates that the unstable oscillation of the corresponding
magnetic bearing system occurs.

4. Hopf Bifurcation Control

In practical applications, complex magnetic bearing systems
are generally considered to be deterministic. Routine
maintenance and monitoring are performed as de-
terministic; in fact, almost all actual models are affected by
random factors. If the effects of randomness are not elim-
inated, the magnetic bearing system is likely to have many
unexpected disruptive behaviors. In order to overcome the
impact of randomness, we introduce a hybrid feedback
controller to achieve the goal.

4.1. Linear Feedback Control Method. Linear feedback
control method is a kind of common method in previous
papers. We use this method on the stochastic parameter
model. Let controllers be C10 � k2z and C11 � k2q. Put the
controller on the bearing’s model, and the model becomes
equation (17). ,en, we can get equation (18) by the or-
thogonal polynomial approximation theory as used before:

_x � z,

_z � α4y
2
z − 2(μ + δu)z + α3x

2
z + α6xz

2
+ α1x

3

+ α2y
2

+ α5q
2

+ α7yq − ω2
􏼐 􏼑x + k2z,

_y � q,

_q � α4x
2
q − 2(μ + δu)q + α3y

2
q + α6yq

2
+ α1y

3

+ α2x
2

+ α5z
2

+ α7xz − ω2
􏼐 􏼑y + k2q,

(17)
d
dt

x0(t) � z0(t),

d
dt

z0(t) � α4S0(t) − 2μz0(t) − δz1(t) + α3A0(t)

+ α6B0(t) + α1X0(t) + α2C0(t) + α5D0(t)

+ α7E0(t) − ω2
x0(t) + k2z0,

d
dt

y0(t) � q0(t),

d
dt

q0(t) � α4F0(t) − 2μq0(t) − δq1(t) + α3G0(t)

+ α6H0(t) + α1Y0(t) + α2I0(t) + α5J0(t)

+ α7K0(t) − ω2
y0(t) + k2q0,

d
dt

x1(t) � z1(t),

d
dt

z1(t) � α4S1(t) − 2μz1(t) − δ z0(t) + z2(t)( 􏼁

+ α3A1(t) + α6B1(t) + α1X1(t) + α2C1(t)

+ α5D1(t) + α7E1(t) − ω2
x1(t) + k2z1,

d
dt

y1(t) � q1(t),

d
dt

q1(t) � α4F1(t) − 2μq1(t) − δ q0(t) + q2(t)􏼂 􏼃

+ α3G1(t) + α6H1(t) + α1Y1(t) + α2I1(t)

+ α5J1(t) + α7K1(t) − ω2
y1(t) + k2q1,

d
dt

x2(t) � z2(t),

d
dt

z2(t) � α4S2(t) − 2μz2(t) − δz1(t) + α3A2(t)

+ α6B2(t) + α1X2(t) + α2C2(t) + α5D2(t)

+ α7E2(t) − ω2
x2(t) + k2z2,

d
dt

y2(t) � q2(t),

d
dt

q2(t) � α4F2(t) − 2μq2(t) − δq1(t) + α3G2(t)

+ α6H2(t) + α1Y2(t) + α2I2(t) + α5J2(t)

+ α7K2(t) − ω2
y2(t) + k2q2.

(18)
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According to equation (18), the phase orbit diagram
and time history diagram when k2 � 0.01 are shown in
Figure 5. ,rough comparing Figure 4(a) with Figure 5(a),
we can find that the amplitude of the limit cycle decreases.
,at is to say, the linear feedback control method is
effective.

4.2. Nonlinear Stochastic Feedback Control. A nonlinear
stochastic feedback controller for the Hopf bifurcation of
the uncertain magnetic bearing model is proposed firstly in
[23]. Let the feedback controller be C20 � k1(δ1u′ − 1)x2z

and C21 � k1(δ1u′ − 1)y2q, where k1 is the feedback
strength, when δ1 is the random strength of the controller,
and u′ is a random variable that is independent distributed
with the variables in the stochastic system. A controlled

system loaded with a nonlinear stochastic controller can be
written as

_x � z,

_z � α4y
2
z − 2(μ + δu)z + α3x

2
z + α6xz

2
+ α1x

3

+ α2y
2

+ α5q
2

+ α7yq − ω2
􏼐 􏼑x + k1 δ1u′ − 1( 􏼁x

2
z,

_y � q,

_q � α4x
2
q − 2(μ + δu)q + α3y

2
q + α6yq

2
+ α1y

3

+ α2x
2

+ α5z
2

+ α7xz − ω2
􏼐 􏼑y + k1 δ1u′ − 1( 􏼁y

2
q.

(19)
A controlled system, equation (19), above can be reduced

as
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Figure 3: Uncertain magnetic bearing system response and time history diagram when f � 0, δ< 0.025. (a) ,e response of horizontal
direction. (b) Time history diagram of horizontal direction. (c) ,e response of vertical direction. (d) Time history diagram of vertical
direction.
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Figure 4: Uncertain magnetic bearing system response and time history diagram when f � 0, δ > 0.025. (a) ,e EMR of horizontal
direction. (b) Time history diagram of horizontal direction. (c) ,e SRM of horizontal direction. (d) Time history diagram of horizontal
direction.
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Figure 5: Response diagram and time history diagram of uncertain magnetic bearing system controlled by linear feedback.

Complexity 7



www.manaraa.com

d
dt

x0(t) � z0(t),

d
dt

z0(t) � α4S0(t) − 2μz0(t) − δz1(t) + α3A0(t)

+
δ1
2

k1A1(t) − k1A0(t) + α6B0(t) + α1X0(t)

+ α2C0(t) + α5D0(t) + α7E0(t) − ω2
x0(t),

d
dt

y0(t) � q0(t),

d
dt

q0(t) � α4F0(t) − 2μq0(t) − δq1(t) + α3G0(t)

+
δ1
2

k1G1(t) − k1G0(t) + α6H0(t) + α1Y0(t)

+ α2I0(t) + α5J0(t) + α7K0(t) − ω2
y0(t),

d
dt

x1(t) � z1(t),

d
dt

z1(t) � α4S1(t) − 2μz1(t) − δ z0(t) + z2(t)( 􏼁 + α3A1(t)

+
δ1
2

k1 A0(t) + A2(t)( 􏼁 − k1A1(t) + α6B1(t)

+ α1X1(t) + α2C1(t) + α5D1(t) + α7E1(t)

− ω2
x1(t),

d
dt

y1(t) � q1(t),

d
dt

q1(t) � α4F1(t) − 2μq1(t) − δ q0(t) + q2(t)􏼂 􏼃 + α3G1(t)

+
δ1
2

k1 G0(t) + G2(t)( 􏼁 − k1G1(t) + α6H1(t)

+ α1Y1(t) + α2I1(t) + α5J1(t) + α7K1(t)

− ω2
y1(t),

d
dt

x2(t) � z2(t),

d
dt

z2(t) � α4S2(t) − 2μz2(t) − δz1(t) + α3A2(t)

+
δ1
2

k1A1(t) − k1A2(t) + α6B2(t) + α1X2(t)

+ α2C2(t) + α5D2(t) + α7E2(t) − ω2
x2(t),

d
dt

y2(t) � q2(t),

d
dt

q2(t) � α4F2(t) − 2μq2(t) − δq1(t) + α3G2(t)

+
δ1
2

k1G1(t) − k1G2(t) + α6H2(t) + α1Y2(t)

+ α2I2(t) + α5J2(t) + α7K2(t) − ω2
y2(t).

(20)

It can be seen from the above equations that when the
strength of the controller takes N � 5, and the strength value
of controller is 3. Considering δ1 � 3, the controlled

magnetic bearing limit circle is shown in Figure 6(a). ,e
time history diagram of the controlled uncertain magnetic
bearing system is shown in Figure 6(b). It can be seen from
Figure 6 that the nonlinear feedback control can also reduce
the amplitude of the limit cycle, and the results are the same
as that of the linear feedback controller nearly.

4.3. Hybrid Feedback Control Method. In this part, we carry
out a new method which is a kind of hybrid method. ,is
method is a linear feedback controller combined with
nonlinear stochastic feedback controller. Of course, we want
to know if this method is more effective than either of the
single method. We design a hybrid feedback controller is
C30 � k2z + k1(δ1u′ − 1)x2z and C31 � k2q + k1(δ1u′ − 1)

y2q. ,e values of the coefficients of hybrid feedback con-
troller are the same as in Sections 4.1 and 4.2. ,en, the
stochastic magnetic bearing controlled by the hybrid feed-
back method can be written as

_x � z,

_z � α4y
2
z − 2(μ + δu)z + α3x

2
z + α6xz

2
+ α1x

3

+ α2y
2

+ α5q
2

+ α7yq − ω2
􏼐 􏼑x + k2z + k1 δ1u′ − 1( 􏼁x

2
z,

_y � q,

_q � α4x
2
q − 2(μ + δu)q + α3y

2
q + α6yq

2
+ α1y

3

+ α2x
2

+ α5z
2

+ α7xz − ω2
􏼐 􏼑y + k2q + k1 δ1u′ − 1( 􏼁y

2
q.

(21)

,e results of hybrid feedback controller are depicted
based on equation (20) as shown in Figure 7. ,e Runge–
Kutta method is utilized to explore the effectiveness of the
new controller. It is observed from Figures 4(a), 4(b) and 7
that the hybrid controller method can reduce the amplitude
of Hopf bifurcation. Furthermore, it is more useful to
control the Hopf bifurcation than linear feedback controller
and nonlinear stochastic feedback controller, and we can see
this result by comparison of Figures 5 and 6 with Figure 7.

,e time history diagrams of Figure 8 are depicted based
on equations (18), (20), and (22), respectively. Figures 8(b)
and 8(c) are two enlarged views of Figure 8(a). One can
observe that a limit cycle is becoming smaller gradually, and
when the hybrid controller is added to magnetic bearing, the
Hopf bifurcation disappears nearly. Selecting different types
of controllers, the result can be obtained. We plot the re-
sponse and time history diagram of the magnetic bearing
system to demonstrate the influence of three kinds of
controllers. We compare the results of three controllers by
the numerical method. Figure 8(b) demonstrates that the
nonlinear stochastic feedback controller is better than the
linear feedback controller in a certain period of time, while
further numerical simulation in Figure 8(c) shows that two
controllers have the same results for controlling Hopf bi-
furcation. But throughout this section, we have to point out
that a hybrid controller is better than either of the single
controller. ,e results can be verified explicitly by Figure 8.
Based on linear feedback controller and nonlinear stochastic
feedback controller, the new hybrid controller presented by
us is more effective:
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Figure 7: Response diagram and time history diagram of the uncertain magnetic bearing system controlled by a hybrid feedback method.
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Figure 6: Response diagram and time history diagram of uncertain magnetic bearing system controlled by nonlinear stochastic feedback.
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Figure 8: Continued.
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d
dt

x0(t) � z0(t),

d
dt

z0(t) � α4S0(t) − 2μz0(t) − δz1(t) + α3A0(t) + k2z0

+
δ1
2

k1A1(t) − k1A0(t) + α6B0(t) + α1X0(t)

+ α2C0(t) + α5D0(t) + α7E0(t) − ω2
x0(t),

d
dt

y0(t) � q0(t),

d
dt

q0(t) � α4F0(t) − 2μq0(t) − δq1(t) + α3G0(t) + k2q0

+
δ1
2

k1G1(t) − k1G0(t) + α6H0(t) + α1Y0(t)

+ α2I0(t) + α5J0(t) + α7K0(t) − ω2
y0(t),

d
dt

x1(t) � z1(t),

d
dt

z1(t) � α4S1(t) − 2μz1(t) − δ z0(t) + z2(t)( 􏼁

+ α3A1(t) + k2z1 +
δ1
2

k1 A0(t) + A2(t)( 􏼁

− k1A1(t) + α6B1(t) + α1X1(t) + α2C1(t)

+ α5D1(t) + α7E1(t) − ω2
x1(t),

d
dt

y1(t) � q1(t),

d
dt

q1(t) � α4F1(t) − 2μq1(t) − δ q0(t) + q2(t)􏼂 􏼃

+ α3G1(t) + k2q1 +
δ1
2

k1 G0(t) + G2(t)( 􏼁

− k1G1(t) + α6H1(t) + α1Y1(t) + α2I1(t)

+ α5J1(t) + α7K1(t) − ω2y1(t),

d
dt

x2(t) � z2(t),

d
dt

z2(t) � α4S2(t) − 2μz2(t) − δz1(t) + α3A2(t) + k2z2

+
δ1
2

k1A1(t) − k1A2(t) + α6B2(t) + α1X2(t)

+ α2C2(t) + α5D2(t) + α7E2(t) − ω2x2(t),

d
dt

y2(t) � q2(t),

d
dt

q2(t) � α4F2(t) − 2μq2(t) − δq1(t) + α3G2(t) + k2q2

+
δ1
2

k1G1(t) − k1G2(t) + α6H2(t) + α1Y2(t)

+ α2I2(t) + α5J2(t) + α7K2(t) − ω2y2(t).

(22)
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Figure 8: Time history diagrams of uncertain the magnetic bearing system controlled by three different methods. (b, c) Enlarged views of
(a).
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5. Conclusions

,e nonlinear behavior of magnetic bearing has been in-
vestigated, and the uncertain parameter has been consid-
ered. It has been shown that the various permeability values
of magnetic bearing can lead to Hopf bifurcation, indicating
the importance of taking random parameter into account.

,e dynamic system under uncertain parameter exhibits
the Hopf bifurcation phenomena.,emethod of orthogonal
polynomial approximation has been used to transform the
system as an equivalent deterministic expansion system.,e
bifurcation behavior of deterministic system is studied for
various permeability values. It has been shown that the
motions for the x and y directions lose their stability via
Hopf bifurcation. ,e results obtained by the mathematical
theory method are in good agreement with numerical in-
tegration. Besides, a hybrid control strategy is presented
which can stabilize the magnetic bearing more effective than
traditional linear feedback controller and nonlinear sto-
chastic feedback controller. An important advantage of this
control method is not only regarding the combination of
linear and nonlinear but also considering deterministic
controller and stochastic controller.

,e results obtained are expected to be useful in the
know of magnetic bearing under uncertain parameters and
designs of the controller to stabilize the magnetic bearing
system.

Nomenclature

μ0: Magnetic permeability under vacuum
A: Effective cross-sectional area of one electromagnet
N: ,e number of windings around the core
Ii: Coil current
δi: Radial clearance between the stator and the rotor
φ: Half angle of the radial electromagnetic circuit
c0: Steady-state air gap
m: Mass
e: Eccentricity of unbalance
c: Damping coefficient
Ω: Rotor speed
fi: Electromagnetic force produced by every pair of

electromagnets.
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